Rare Kaon Decays in Supersymmetric Models

Wolfgang Altmannshofer

2012 Project X Physics Study June 14 - 23, 2012

Sensitivity to Very Short Distances

SM amplitude is loop suppressed and CKM suppressed

$$\sim \frac{1}{M_X^2}$$

Generic NP not necessarily suppressed

▶ rare K decays probe very high scales

$$\mathit{M}_{\mathit{X}} \sim rac{\mathit{M}_{\mathit{W}}}{\mathit{g}^{2}} \sqrt{rac{16\pi^{2}}{|\mathit{V}_{\mathit{ts}}^{*}\mathit{V}_{\mathit{td}}|}} \sim 130 \; \mathsf{TeV}$$

Sensitivity to Very Short Distances

$$\sim \frac{g^4}{16\pi^2} \frac{1}{M_W^2} V_{ts}^* V_{td}$$

SM amplitude is loop suppressed and CKM suppressed

$$\sim {1 \over M_X^2}$$

Generic NP not necessarily suppressed

► rare K decays probe very high scales

$$\mathit{M}_{\mathit{X}} \sim rac{\mathit{M}_{\mathit{W}}}{\mathit{g}^{2}} \sqrt{rac{16\pi^{2}}{|\mathit{V}_{\mathit{tS}}^{*}\mathit{V}_{\mathit{td}}|}} \sim 130 \; \mathsf{TeV}$$

compare to rare B decays:

$$b o d: \ M_X \sim rac{M_W}{g^2} \sqrt{rac{16\pi^2}{|V_{td}^*V_{tb}|}} \sim 25 \, {
m TeV} \, ; \ b o s: \ M_X \sim rac{M_W}{g^2} \sqrt{rac{16\pi^2}{|V_{ts}^*V_{tb}|}} \sim 12 \, {
m TeV}$$

The MSSM and its Flavor Structure

► In the SM, the only sources of flavor violation are the Yukawa couplings Y_u and Y_d

The MSSM and its Flavor Structure

- ► In the SM, the only sources of flavor violation are the Yukawa couplings Y_u and Y_d
- In supersymmetric models every fermionic degree of freedom has a bosonic partner and vice versa
- In the MSSM, some partners (Higgsinos, stops) should be below the TeV scale to have a natural solution to the hierarchy problem
- squark soft masses, m²_O, and trilinear couplings of squarks with the Higgs, A_q, can introduce new sources of flavor violation

Standard particles

SUSY particles

The MSSM and its Flavor Structure II

misalignment between up quarks and down quarks in flavor space

- CKM matrix
- → FCNCs naturally suppressed hierarchical CKM + GIM mechanism

misalignment between quarks and squarks in flavor space

Mass Insertions

$$M_{\tilde{q}}^2 = \tilde{M}^2 (11 + \frac{\delta_q}{})$$

- → Flavor and CP violating neutral gaugino-quark-squark interactions
 - ► SUSY Flavor Problem

Outline

- 1 $K \to \pi \nu \bar{\nu}$ in the MSSM with Minimal Flavor Violation
- 2 $K \to \pi \nu \bar{\nu}$ in the MSSM beyond Minimal Flavor Violation
- $oxed{3}$ $extit{K}
 ightarrow \pi
 u ar{
 u}$ and Very Light Neutralinos
- Summary

 $K
ightarrow \pi
u ar{
u}$ and Minimal Flavor Violation

The MSSM with Minimal Flavor Violation

- ➤ Yukawa couplings ↔ CKM matrix is the only source of flavor violation
- ► (note that mass insertions are not necessarily 0 but strongly suppressed by CKM elements, e.g. δ^{LL}_{sd} ~ V^{*}_{ts} V_{td} ...)
- FCNCs suppressed by the same CKM elements as in the SM
- strong constraints from meson mixing naturally avoided
- ▶ nonetheless large effects in rare B decays are possible (e.g. $B_s \to \mu^+ \mu^-$ and $B \to K^* \mu^+ \mu^-$) due to additional enhancement factors (large tan β)
- ▶ what about $K \to \pi \nu \bar{\nu}$?

Charged Higgs Contributions

- ▶ suppressed by either small quark masses or $\cot^2 \beta$
- ▶ in the MSSM a light Higgs mass of $M_h \simeq 125 \text{GeV}$ implies $\tan \beta \gtrsim 5$ (unless stops are super heavy $\gg 10 \text{ TeV}$)
- ▶ only few % effects in from charged Higgs loops possible
- however: light Higgs mass is sensitive to physics beyond the MSSM (BMSSM, NMSSM, ...)
- \blacktriangleright tan β can be O(1) in these models
- ▶ always constructive interference with the SM
- ▶ how large can the effects in $K \to \pi \nu \bar{\nu}$ be?

Chargino Contributions

- no sensitivity to flavor blind phases
- ightharpoonup only phase comes from $V_{te}^* V_{td}$
- constructive and destructive interference with the SM possible
- contributions from chargino loops only visible if stops and charginos are very light (100 - 200) GeV

$$\Delta BR(K_L \to \pi^0 \nu \bar{\nu}) > 15\%$$

 $\Delta BR(K_L \to \pi^0 \nu \bar{\nu}) > 12.5\%$
 $\Delta BR(K_L \to \pi^0 \nu \bar{\nu}) > 10\%$

$$\sim rac{g^4}{16\pi^2}rac{1}{M_z^2}rac{m_t^2}{M_W^2}\,V_{ts}^*V_{td}$$

Isidori, Mescia, Paradisi, Smith, Trine, JHEP 0608 (2006)

Correlation between $K^+ \to \pi^+ \nu \bar{\nu}$ and $K_L \to \pi^0 \nu \bar{\nu}$

- ▶ Minimal Flavor Violation predicts a strong correlation between $K^+ \to \pi^+ \nu \bar{\nu}$ and $K_L \to \pi^0 \nu \bar{\nu}$ (only phase comes from $V_{ts}^* V_{td}$)
- what are the possible ranges for the branching ratios?

model independent MFV framework

Correlation between $K^+ \to \pi^+ \nu \bar{\nu}$ and $K_L \to \pi^0 \nu \bar{\nu}$

- ▶ Minimal Flavor Violation predicts a strong correlation between $K^+ \to \pi^+ \nu \bar{\nu}$ and $K_L \to \pi^0 \nu \bar{\nu}$ (only phase comes from $V_{ts}^* V_{td}$)
- what are the possible ranges for the branching ratios?

model independent MFV framework

MSSM with MFV

Correlation between $K^+ \to \pi^+ \nu \bar{\nu}$ and $K_L \to \pi^0 \nu \bar{\nu}$

- ▶ Minimal Flavor Violation predicts a strong correlation between $K^+ \to \pi^+ \nu \bar{\nu}$ and $K_L \to \pi^0 \nu \bar{\nu}$ (only phase comes from $V_{ts}^{ts} V_{td}$)
- what are the possible ranges for the branching ratios?

model independent MFV framework

MSSM with MFV

MSSM with MFV + extended Higgs sector

 $extbf{\textit{K}}
ightarrow \pi
u ar{
u}$ Beyond MFV

The MSSM with Generic Flavor Structure

 squark soft masses and trilinear couplings are in general 3 x 3 matrices in flavor space and not necessarily aligned with the quark masses

$$\begin{split} M_{\tilde{d}}^2 &= \left(\begin{array}{cc} m_{Q}^2 & m_{d}(A_d - \mu \tan \beta) \\ m_{d}(A_d^{\dagger} - \mu^* \tan \beta) & m_{D}^2 \end{array} \right) + O(v^2) \\ M_{\tilde{u}}^2 &= \left(\begin{array}{cc} V_{CKM} \ m_{Q}^2 \ V_{CKM}^{\dagger} & m_{u}(A_u - \mu \cot \beta) \\ m_{u}(A_u^{\dagger} - \mu^* \cot \beta) & m_{U}^2 \end{array} \right) + O(v^2) \end{split}$$

misalignment between quarks and squarks in flavor space

Mass Insertions

$$M_{\tilde{q}}^2 = \tilde{M}^2 (11 + \frac{\delta_q}{})$$

→ Flavor and CP violating neutral gaugino-quark-squark interactions

Large Gluino Contributions?

- ▶ gluino contributions are always tiny! Nir, Worah, Phys. Lett. B423 (1998)
- ▶ unique feature of rare decays that are dominated by Z penguins

Higgs Contributions for Large tan β

Isidori, Paradisi, Phys. Rev. D73 (2006)

ightharpoonup in presence of flavor changing RH currents in the down sector, charged Higgs couplings are strongly modified by $\tan \beta$ enhanced loop corrections

$$\frac{m_{s}m_{d}}{M_{W}^{2}}V_{ts}^{*}V_{td}\tan^{2}\beta \rightarrow \frac{\alpha^{2}}{(4\pi)^{2}}\frac{m_{b}^{2}}{M_{W}^{2}}(\delta_{d}^{RR})_{32}^{*}(\delta_{d}^{RR})_{31}\tan^{4}\beta$$

effectively a 3 loop contribution, but can be very relevant!

Constraints from $B_s \to \mu^+ \mu^-$ and $B_d \to \mu^+ \mu^-$

- ▶ the same flavor structures entering the charged Higgs loops to $K \to \pi \nu \bar{\nu}$ also induce strongly tan β enhanced contributions to $B_q \to \mu^+ \mu^-$
- ▶ different decoupling properties for heavy Higgs masses

$$K
ightarrow \pi
u ar{
u}
ightarrow rac{\log(M_H^2/m_t^2)}{M_H^2} \; , \quad B_q
ightarrow \mu^+ \mu^-
ightarrow rac{1}{M_H^2}$$

Sensitivity to $(\delta_d^{RR})_{32}$ and $(\delta_d^{RR})_{31}$

(in the plot:
$$\tan \beta = 50$$
, $M_{\tilde{a}} = M_{\tilde{a}} = -\mu$)

Isidori, Paradisi, Phys. Rev. D73 (2006)

- ▶ the $K \to \pi \nu \bar{\nu}$ decays are the most sensitive probes of $(\delta_d^{RR})_{32}$ and $(\delta_d^{RR})_{31}$ for large Higgs masses
- but note: the bounds on $B_q \to \mu^+ \mu^-$ improved by more than one order of magnitude since this plot was done, and they will continue to improve

Wino Contributions

Colangelo, Isidori, JHEP 9809 (1998)

$$\sim rac{g^4}{16\pi^2}rac{1}{M_Z^2}\,(\delta_u^{LR})_{23}(\delta_u^{LR})_{13}^*$$

- lacktriangledown effective (2 ightarrow 1) transition through the third generation (2 ightarrow 3) imes (3 ightarrow 1)
- ▶ decoupling with the SUSY scale "hidden" in the left-right couplings $(\delta_u^{LR})_{23}$ and $(\delta_u^{LR})_{13}^*$
- ▶ the Wino loop can give the by far largest contribution to Z penguin mediated decays like $K \to \pi \nu \bar{\nu}$ in the MSSM
- ▶ $K \rightarrow \pi \nu \bar{\nu}$ decays probe flavor violation in the up-squark sector!

Constraints from Meson Mixing

▶ couplings $(\delta_u^{LR})_{23}$ and $(\delta_u^{LR})_{13}^*$ also induce Kaon and D meson mixing

- ► Kaon and D meson mixing can receive large contributions also from other flavor violating sources (→ partial cancellations are easily possible)
- $K \to \pi \nu \bar{\nu}$ is more sensitive to $(\delta_u^{LR})_{23}$ and $(\delta_u^{LR})_{13}^*$

Isidori, Mescia, Paradisi, Smith, Trine, JHEP 0608(2006)

 \to constraints from ϵ_K and CPV in D^0 mixing cannot rule out large effects in $K \to \pi \nu \bar{\nu}$

General Parameter Scan

- Important constraints also come from ϵ'/ϵ and $\textit{K}_L \rightarrow \mu^+\mu^-$ Buras, Silvestrini, Nucl.Phys. B546 (1999) Buras, Colangelo, Isidori, Romanino, Silvestrini, Nucl. Phys. B566 (2000);
- result of a general scan of the MSSM parameter space, taking into account all relevant constraints (apart from ε'/ε!):

both branching ratios can be enhanced by more than an order of magnitude (corresponding regions of parameter space are to a certain amount fine-tuned)

exp. results already give non-trivial constraints on the MSSM parameter space

Buras, Ewerth, Jager, Rosiek, Nucl. Phys. B714 (2005)

A Model with "Radiative Flavor Violation"

- at tree level only bottom and top Yukawas are non-zero and CKM matrix is 11
- only source of flavor violation are the squark trilinear couplings
- small Yukawa couplings and CKM mixing angles are induced radiatively
- ▶ leads to observable effects in $K \to \pi \nu \bar{\nu}$

Crivellin, Hofer, Nierste, Scherer, Phys. Rev. D84 (2011)

"Disoriented A terms"

Giudice, Isidori, Paradisi, JHEP 1204 (2012)

$$(\delta_q^{LR})_{ij} = \frac{m_{q_j}A}{M_{\bar{q}}^2}\theta_{ij} \ , \quad (\delta_q^{LL})_{ij}, \ (\delta_q^{RR})_{ij} \simeq 0$$

 $(A \simeq M_{\tilde{a}}, \, \theta_{ij} \text{ are complex O(1) numbers)}$

- ▶ originally discussed in the context of direct CP violation in charm decays $(D \to K^+K^- \text{ and } D \to \pi^+\pi^-)$
- ▶ setup can naturally explain the large values for ΔA_{CP} observed by LHCb and CDF (the relevant coupling is $(\delta_u^{LR})_{12}$)
- ▶ the couplings $(\delta_u^{LR})_{13}$ and $(\delta_u^{LR})_{23}$ that enter $K \to \pi \nu \bar{\nu}$ are proportional to the large top mass
- "disoriented A terms" predict generically also O(1) effects in $K \to \pi \nu \bar{\nu}$

Possible Correlations with Rare B decays

- ▶ dominant contributions to $K \to \pi \nu \bar{\nu}$ is a Z penguin that involves (2 \to 3) and (3 \to 1) transitions
- ▶ also expect non standard effects in rare $b \rightarrow s$ and $b \rightarrow d$ decays

Possible Correlations with Rare B decays

- ▶ dominant contributions to $K \to \pi \nu \bar{\nu}$ is a Z penguin that involves (2 \to 3) and (3 \to 1) transitions
- ▶ also expect non standard effects in rare $b \rightarrow s$ and $b \rightarrow d$ decays

generic expectations, but no strict correlations

 $K o \pi
u \bar{
u}$ and Very Light Neutralinos

- ▶ the mass of the lightest neutralino is unconstrained by direct searches (note: the PDG says $M_\chi \gtrsim 46~\text{GeV}$ this bound is obtained from direct searches of charginos and assumes gaugino mass unification at the GUT scale)
- ▶ very light (or even massless) neutralinos cannot be excluded
- ▶ if M_{χ} is sufficiently small the $K \to \pi \chi \chi$ decay is possible

- \blacktriangleright neither ν 's nor χ 's are detected
- \rightarrow same experimental signature: " $K \rightarrow \pi + E$ "

Dreiner et al. Eur. Phys. J. C62 (2009); Phys. Rev. D80 (2009)

Changes in the p_{π} Spectrum

Dreiner et al. Phys. Rev. D80 (2009)

- the p_{π} spectrum for $K \to \pi \chi \chi$ depends on the mass of the neutralinos
- more difficult to separate from backgrounds

see also talk by Philippe

Summary

- ▶ Rare Kaon decays are highly sensitive to New Physics at high scales
- ▶ In the MSSM with MFV, the $K \to \pi \nu \bar{\nu}$ decays remain to a large extent SM-like. Visible deviations might come from a extended Higgs sector and are highly correlated between $K^+ \to \pi^+ \nu \bar{\nu}$ and $K_L \to \pi^0 \nu \bar{\nu}$
- ▶ In the MSSM beyond MFV, $K^+ \to \pi^+ \nu \bar{\nu}$ and $K_L \to \pi^0 \nu \bar{\nu}$ can be modified independently and are unique probes of flavor violation in the up-squark sector. Several motivated frameworks exist that lead to O(1) modifications of the branching ratios
- ▶ If neutralinos are very light, the $K \to \pi \chi \chi$ decay is possible and can lead to a non-standard p_{π} spectrum.